Dürr bringt Künstliche Intelligenz in die Lackieranlage

Advanced Analytics ist die erste marktreife KI-Anwendung für Lackieranlagen. Die intelligente Lösung, die neueste IT-Technologie mit Maschinenbaukompetenz kombiniert, identifiziert Fehlerquellen und ermittelt optimale Wartungszeitpunkte.

Die KI-Anwendung Advanced Analytics von Dürr identifiziert Fehlerquellen und ermittelt optimale Wartungszeitpunkte (Bild: Dürr)

Advanced Analytics ist das neueste Modul aus der Produktfamilie DXQanalyze. Erste Praxiseinsätze belegen, dass die Software von Dürr die Anlagenverfügbarkeit und die Oberflächenqualität lackierter Karosserien optimiert. Warum tritt an einem Karosserieteil ungewöhnlich häufig derselbe Fehler auf? Wann ist der späteste Zeitpunkt, einen Mischer im Roboter auszutauschen, ohne einen Maschinenstillstand zu provozieren? Exakte Antworten sind wichtig: „Präzise Aussagen zur Früherkennung von Qualitätsmängeln oder Ausfällen gibt es bisher kaum. Und wenn, basieren sie in der Regel auf einer mühsamen analogen Datenauswertung oder Trial-and-Error-Versuchen. Mit Künstlicher Intelligenz (KI) geht das jetzt wesentlich genauer und automatisch“, erklärt Gerhard Alonso Garcia, Vice President MES & Control Systems bei Dürr. Die neue selbstlernende Anlagen- und Prozessüberwachung Advanced Analytics erweitert DXQanalyze. Die digitale Produktfamilie von Dürr beinhaltete bereits die Module Data Acquisition für die Erfassung von Produktionsdaten, Visual Analytics für deren Visualisierung sowie Streaming Analytics.

Das Besondere an Advanced Analytics ist, dass dieses Modul große Datenmengen einschließlich historischer Daten mit maschinellem Lernen kombiniert. Im übertragenen Sinne bedeutet das: Die selbstlernende KI-Applikation besitzt ein Gedächtnis. Dadurch kann sie, basierend auf den Informationen aus der Vergangenheit, sowohl komplexe Zusammenhänge in großen Datenmengen erkennen, als auch anhand des aktuellen Zustands einer Maschine ein Ereignis in der Zukunft sehr exakt prognostizieren. Dafür gibt es viele Anwendungsfälle in Lackieranlagen – auf der Komponenten-, Prozess- und Anlagenebene. Im Bereich der Komponenten zielt Advanced Analytics darauf ab, die Downtime durch prädiktive Wartungs- und Instandhaltungsinformationen zu verringern, wie etwa durch die Prognose der verbleibenden Lebensdauer eines Mischers. Wird das Bauteil zu früh getauscht, erhöht das unnötig die Ersatzteilkosten und Instandhaltungsaufwände, während ein zu später Tausch zu Qualitätsproblemen bei der Beschichtung und zu einem Maschinenstillstand führen kann. Advanced Analytics erlernt zunächst anhand hochfrequenter Roboterdaten die Verschleißindikatoren und das zeitliche Muster des Verschleißes. Da die Daten kontinuierlich erfasst und überwacht werden, erkennt das Machine-Learning-Modul – basierend auf der tatsächlichen Nutzung – Alterungstrends individuell für die jeweilige Komponente und berechnet so den optimalen Austauschzeitpunkt.

Advanced Analytics verbessert die Qualität auf der Prozessebene, indem es Anomalien feststellt, etwa durch eine Simulation der Aufheizkurve im Trockner. Auf der Anlagenebene wird die Software DXQplant.analytics mit dem Modul Advanced Analytics eingesetzt, um die übergreifende Gesamtanlageneffektivität (Overall Equipment Efficency, OEE) zu steigern. Die Künstliche Intelligenz spürt systematische Fehler auf, wie beispielsweise wiederkehrende Qualitätsdefekte bei bestimmten Modelltypen, speziellen Farben oder an einzelnen Karosserieteilen. Das wiederum erlaubt Rückschlüsse, welcher Schritt im Produktionsprozess für die Abweichungen verantwortlich ist. Solche Fehler-Ursachen-Korrelationen erlauben es zukünftig, die Erstläuferquote zu erhöhen, da sehr frühzeitig reagiert werden kann.

Surface-News

Der Newsletter der Oberflächenbranche - kostenfrei die Surface-News bestellen!

Jetzt abonnieren